# Lipophilic Halogenozirconocene(III) Complexes: $\left[\left\{\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-\mathrm{CI})\right\}_{2}\right]$, $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Zr}\left\{\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-\mathbf{1 , 3}\right\}_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2} \mathbf{- 1 , 3}\right\}_{2} \mathrm{Cl}_{2}\right] \dagger$ 

Peter B. Hitchcock, Michael F. Lappert, Gerard A. Lawless, Hélène Olivier and Evelyn J. Ryan<br>School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

Treatment of $\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2} \mathrm{X}_{2}\right]$ with $\mathrm{Na}-\mathrm{Hg}$ in tetrahydrofuran (THF) affords the blue ( $\mathrm{X}=\mathrm{Cl} \mathbf{2 a}$ or Br ) or green ( $X=I$ ) crystalline complexes $\left[\left\{\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-X)\right\}_{2}\right]$, with characteristic Zr 'II ESR spectra (PhMe, 300 K ) and exceptionally long ( $3.86-4.17 \AA$ ) $\mathrm{Zr} \cdots \mathrm{Zr}$ contacts; 2 a is susceptible to facile $\mathrm{Zr}(\mu-\mathrm{Cl})_{2} \mathrm{Zr}$ bridge-cleavage upon reaction with either a neutral (e.g. THF) or an anionic (e.g. $\mathrm{Cl}^{-}$) nucleophile, as in its conversion into $\left[\mathrm{NBur}_{4}\right]\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right)_{2} \mathrm{Cl}_{2}\right]$.

We report the following novel contributions to zirconium(iii) chemistry. (i) Crystalline, paramagnetic, dinuclear zirconocene(III) complexes $\left[\left\{\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-\mathrm{X})\right\}_{2}\right](\mathrm{X}=$ $\mathrm{Cl} \mathbf{2 a}, \mathrm{Br} 2 \mathbf{2}$ or I 2c) have been synthesised from $[\mathrm{Zr}\{\eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2} \mathrm{X}_{2}$ ] precursors (e.g. $\left.\mathrm{X}=\mathrm{Cl} 1\right)^{1}$ (i in Scheme 1). (ii) Nucleophilic bridge-cleavage addition reactions of 2a have been demonstrated, including that (ii in Scheme 1) with $\mathrm{Cl}^{-}$to generate the crystalline, paramagnetic zirconocenate(iII) complex $\left[\mathrm{NBu}^{n_{4}}\right]\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-\right.\right.$ $1,3\}_{2} \mathrm{Cl}_{2}$ ] 3. (iii) The X-ray structures $\ddagger$ of 1 (Fig. 1) and 2a

[^0](Fig. 2) (with an exceptionally long ZrZr distance, but shorter than in $\mathbf{2 b}$ or $\mathbf{2 c}$ ) are compared in the context of those of related compounds (Table 1); for each of complexes 1, 2a and 3 the metal centre has the same four ligands in its inner coordination sphere. (iv) Electron spin resonance (ESR) spectra of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{3}$ are compared with literature data (Table 2).

The +4 oxidation state is dominant for organic compounds of zirconium, although complexes in some lower states are also known; evidence for elusive paramagnetic $\mathrm{Zr}^{\text {III }}$ complexes has, until recently, rested largely on cyclic voltammetry and ESR spectroscopic data. ${ }^{2}$ X-Ray structures appear to have been limited to two neutral mononuclear (1989), $\left[\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Bu}^{\mathrm{t}}-1,3\right)_{2} \mathrm{Cl}\right]^{3}$ and $\left[\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta-\mathrm{C}_{8} \mathrm{H}_{8}\right)\right],{ }^{4}$ and twelve diamagnetic dinuclear ${ }^{5}$ complexes.
$\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2} \mathrm{X}_{2}\right] \xrightarrow{\mathrm{i}}\left[\left\{\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-\mathrm{Cl})_{2}\right]\right.$

$$
\begin{array}{ll}
\mathbf{1} ; \mathrm{X}=\mathrm{Cl}(\text { ref. 1) } & \mathbf{2 a} ; \mathrm{X}=\mathrm{Cl}, 50 \%, \text { blue, m.p. } 135-137^{\circ} \mathrm{C} \\
& \text { 2b; } \mathrm{X}=\mathrm{Br}, 50 \%, \text { blue, m.p. } 175-176^{\circ} \mathrm{C} \\
& \text { 2c; } \mathrm{X}=\mathrm{I}, 60 \%, \text { green, m.p. } 163-165^{\circ} \mathrm{C}
\end{array}
$$

$$
\begin{gathered}
\xrightarrow[\mathrm{X}=\mathrm{Cl}]{\mathrm{ii}}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2} \mathrm{Cl}_{2}\right] \\
\text { 3; } 55 \%, \text { brown, m.p. } 146-147^{\circ} \mathrm{C}
\end{gathered}
$$

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{Na}-\mathrm{Hg}, \mathrm{THF}, 0$ to $20^{\circ} \mathrm{C}, 1$ to 3 h ; then removal of THF and crystallisation from PhMe; ii, excess of $\left[\mathrm{NBu}_{4}\right] \mathrm{Cl}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$. Characterisation: 1, 2a, 2b, 2c, and $\mathbf{3}$ are crystalline (satisfactory microanalytical results); for the X-ray structures of $\mathbf{1}$ and 2a, see Figs. 1 and 2; for ESR data see Table 2.


Fig. 1 X -Ray structure of $\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2} \mathrm{Cl}_{2}\right] \mathbf{1}$, with atom numbering scheme. Selected intramolecular bond angles $\left({ }^{\circ}\right)$ (see also Table 1): cent-Zr-cent 130.8, cent-Zr-Cl 104.5, cent-Zr-Cl' 107.0 (cent $=$ centroid of the cyclopentadienyl ring).


Fig. 2 X -Ray structure of $\left[\left\{\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-\mathrm{Cl})\right\}_{2}\right]$ 2a, with atom numbering scheme. Selected intramolecular bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ (see also Table 1): $\mathrm{Zr}(1)-\mathrm{Cl}(1) 2.598(2), \mathrm{Zr}(1)-\mathrm{Cl}\left(1^{\prime}\right)$ 2.596(2), $\mathrm{Zr}(1)-\operatorname{cent}(1)$ 2.195, $\mathrm{Zr}(1)-\operatorname{cent}(2)$ 2.216, $\mathrm{Zr}(2)-\mathrm{Cl}(2)$ $2.609(2), \mathrm{Zr}(2)-\mathrm{Cl}\left(2^{\prime \prime}\right) 2.606(2), \mathrm{Zr}(2)-\operatorname{cent}(3) 2.202, \mathrm{Zr}(2)-\operatorname{cent}(4)$ 2.201; $\mathrm{Cl}(1)-\mathrm{Zr}(1)-\mathrm{Cl}\left(1^{\prime}\right) 83.87(6), \operatorname{cent}(1)-\mathrm{Zr}(1)-\operatorname{cent}(2) 131.0$, $\mathrm{Cl}(2)-\mathrm{Zr}(2)-\mathrm{Cl}\left(2^{\prime \prime}\right) 81.67(6), \operatorname{cent}(3)-\mathrm{Zr}(2)-\operatorname{cent}(4) 130.9$.

The majority of the known $\mathrm{Zr}_{2}$ complexes have had a $\mathrm{Zr}(\mu-\mathrm{Cl})_{2} \mathrm{Zr}$ core; alternative bridges have been $\left(\mu-\mathrm{PMe}_{2}\right)_{2},{ }^{5 c}$ $(\mu-\mathrm{Cl})\left(\mu-\mathrm{PMe}_{2}\right),{ }^{5 c} \quad(\mu-\mathrm{I})_{2},{ }^{\text {se.f }} \quad(\mu-\mathrm{I})\left(\mu-\eta, \eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}_{5} \mathrm{H}_{4}\right),{ }^{5 f}$ $(\mu-\mathrm{SPh})\left(\mu-\eta, \eta-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}_{5} \mathrm{H}_{4}\right)^{5 g} \quad$ and $\quad(\mu-\mathrm{Cl})\left[\mu-\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{PMe}_{2}\right)_{2}\right]^{5 /}$ Their $\left(\mathrm{d}^{1}\right)_{2}$ electronic configuration provides one of the simplest models for study of the metal-metal bond (for MO calculations, see ref. 6). Single bonding was postulated for six cases $\left(d_{\mathrm{ZrZr}} 3.10\right.$ to $\left.3.36 \AA\right) ; 5 a . b . d . h$ in the remainder ( $d_{\mathrm{ZrZr}} 3.42$ to $3.67 \AA$ ), antiferromagnetic exchange or ligandmediated superexchange was invoked to account for their diamagnetism. The paramagnetism of $\mathbf{2 a}$ is attributed to its exceptionally long average $d_{\mathrm{ZrZr}}, 3.90 \AA$.

Sodium-amalgam reduction of $\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-\right.\right.$ $1,3\}_{2} \mathrm{Cl}_{2}$ ] $\mathbf{1}$ in tetrahydrofuran (THF) gave a red solution. Upon concentration, this became blue. Recrystallisation of the THF-free blue solid from toluene yielded $[\{\mathrm{Zr}$ $\left.\left.\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-\mathrm{Cl})\right\}_{2}\right]$ 2a. Addition of THF to 2a caused the red solution to be reformed. Likewise, addition of $\mathrm{PMe}_{3}$ to 2 a produced a yellow solution, which upon concentra-

Table 1 Selected X-ray diffraction data on zirconocene dichlorides

| Compound | $\mathrm{Zr}-\mathrm{Cl} / \AA$ | $\mathrm{Cl}-\mathrm{Zr}-\mathrm{Cl} l^{\circ}$ | Ref. |
| :--- | :---: | :---: | :--- |
| $\mathbf{1}$ | 2.426 | 98.50 | This work |
| $\mathbf{2} \mathbf{a}^{a, b}$ | 2.597 | 83.87 | This work |
| $\mathbf{3}$ | 2.608 | 81.67 |  |
| $\left[\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]$ | 2.56 | 85 | $c$ |
| $\left[\left\{\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right\}_{2}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PMe}_{2}\right)\right] 2.591$ | 97 | 9 |  |
| $\left[\left\{\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mu-\mathrm{Cl})\right\}_{2}(\mu-\eta, \eta-\right.$ | $(95.5)^{d}$ | $5 c$ |  |
| $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{e}$ | 2.578 | 100.00 | $5 b$ |

a The unit cell contains two independent dimers, both of which lie on an inversion centre; $\mathrm{Zr} \cdots \mathrm{Zr} 3.86$ and $3.94 \AA$. ${ }^{b}$ The unit cell of the corresponding bromide and iodide contains only one dimer: $\mathrm{Zr} \cdots \mathrm{Zr}$ $4.101(1)$ and $4.171(2) \AA$, respectively; cf. $\mathrm{Zr} \cdots \mathrm{Zr}$ in $\left[\left\{\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right.\right.$ ( $\left.\mu-\mathrm{I})_{2}\right\}_{2}$ 3.669(2) $\AA ;{ }^{5 e} \mathrm{Zr}-\mathrm{Br}-\mathrm{Zr} 96.13(3) ; \mathrm{Zr}-\mathrm{I}-\mathrm{Zr} 91.92(6) .{ }^{c}$ Preliminary data. ${ }^{d}$ This is $\mathrm{Cl}-\mathrm{Zr}-\mathrm{P} .{ }^{e} \mathrm{Zr}-\mathrm{Zr} 3.233 \AA, \mathrm{Zr}-\mathrm{Cl}-\mathrm{Zr} 77.6^{\circ}$.

Table 2 Anisotropic ESR spectra data on complexes 2a, 2b, 2c and $\mathbf{3}$ in PhMe at 300 K and 4, 5 and $\mathbf{6}$ in THF at 300 K

| Compound | $g_{\text {ave }}$ | $a\left({ }^{91} \mathrm{Zr}\right) / \mathrm{G}$ | Ref. |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 a}$ | 1.9506 | 22 | This work |
| $\mathbf{4}$ | 1.9775 | 23 | 7 |
| $\mathbf{5}$ | $1.9780(\mathrm{~d})^{a}$ | 33 | 7 |
| $\mathbf{3}^{c}$ | 1.9856 | 17 | This work |
| $\mathbf{2 b}$ | 1.9448 | 45 | This work |
| $\mathbf{2 c}$ | 1.9339 | $\mathbf{4 7}$ | This work |
| $\mathbf{6}$ | $1.9794(\mathrm{t})^{b}$ |  | This work |

${ }^{a} a\left({ }^{31} \mathrm{P}\right) 9 \mathrm{G},{ }^{b} a\left({ }^{31} \mathrm{P}\right) 17 \mathrm{G} .{ }^{c}$ A complex assigned as containing the ion $\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2} \mathrm{Cl}_{2}\right]^{-}$, obtained by in situ electrolysis at 233 K in the cavity of an ESR spectrometer of the neutral $\mathrm{Zr}^{1 /}$ precursor 1 in THF ( $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{BF}_{4}\right]$ as supporting electrolyte) had $g_{\text {ave }}$ 1.976 and $a\left({ }^{91} \mathrm{Zr}\right) 25.9 \mathrm{G} .{ }^{10}$
tion reverted to 2a. These findings, together with ESR spectroscopic data (Table 2), ${ }^{7}$ are attributed to the equilibrium in eqn. (1). The $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{Zr}-\mathrm{P}$ bonds in the adducts 4 ( L $=\mathrm{THF})$ and $5\left(\mathrm{~L}=\mathrm{PMe}_{3}\right)$ are evidently quite weak, as further demonstrated by variable temperature ESR spectroscopic studies.

$$
\begin{align*}
& {\left[\left\{\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]_{2}(\mu-\mathrm{Cl})\right\}_{2}\right]+2 \mathrm{~L} \rightleftharpoons} \\
& \quad 2\left[\mathrm{Zr}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2}(\mathrm{Cl})(\mathrm{L})\right] \tag{1}
\end{align*}
$$

Complexes $\mathbf{2}$ have a potentially rich derivative chemistry, giving rise not only to adducts such as $\mathbf{4}$ or $\mathbf{5}$, but also to substitution products. An example of the latter is in the reaction between 2a and $\left[\mathrm{Li}(\mathrm{THF})_{n}\right]\left[\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{P}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}-1,2\right]^{8}$ to yield a complex believed to contain the anion [ $\overline{\mathrm{Zr}\{\eta-}$ $\left.\left.\left.\overline{\mathrm{C}}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}_{2}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\}\right]$ 6, evidence for which rests on ESR data (Table 2). A further point of interest regarding complexes $\mathbf{2}$ is their kinetic stability, which contrasts with the propensity of less sterically hindered compounds such as $\left[\left\{\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mu-\mathrm{X})\right\}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$)$ or $[\{\mathrm{Zr}$ -$\left.\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mu-\mathrm{Cl})\right\}_{2}\right]$ to disproportionate to the appropriate zirconocene(Iv) halide and an unidentified ( $\mathrm{Zr}^{11}$ ? ) coproduct. ${ }^{5 f}$

The bond angles at the metal in the $\mathrm{Zr}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-\right.$ $1,3]_{2} \mathrm{Cl}_{2}$ unit of the three crystalline complexes $\mathbf{1}, \mathbf{2 a}$ and $\mathbf{3}$ (preliminary data) are essentially similar, with the two [ $\left.\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right]$ rings being staggered rather than eclipsed, even in the dimer 2a. The mean $\mathrm{Zr}-\mathrm{Cl}$ bond length is significantly longer in the $\mathrm{Zr}^{\mathrm{II}}$ complexes $\mathbf{2 a}$ and $\mathbf{3}$ than in $\mathbf{1}$. The mean $\mathrm{Zr}-\mathrm{Cl}$ bond length of $2.426 \AA$ in $\mathbf{1}$ may also be compared with the $2.423(3) \AA$ for $\left[\mathrm{Zr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Bu}^{{ }_{2}-1,3}\right)_{2} \mathrm{Cl}\right]$ claimed as being the shortest $\mathrm{Zr}-\mathrm{Cl}$ bond length; ${ }^{3}$ although terminal $\mathrm{Zr}-\mathrm{Cl}$ bond lengths of $\mathrm{ca} \cdot 2.42 \AA$ appear in the complexes $\left[\mathrm{Zr}_{2} \mathrm{Cl}_{6} \mathrm{~L}_{4}\right]\left[\mathrm{L}=\mathrm{PR}_{3}\right.$ or $\mathrm{L}_{2}=$ ethylenebis(diphenyl-
phosphine (dppe)]. ${ }^{5 d}$ Details of the X-ray structures of $\mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{3}$ [as well as variable temperature magnetic measurements (with N. M. Edelstein, which are in progress)] will be published later.

We thank the SERC for the award of a studentship for E. J. R., IFP for providing leave of absence for H. O. and the SERC and the Leverhulme Trust for support.

Received, 18th November 1991; Com. 1/05851G

## References

1 A. Antiñolo, M. F. Lappert, A. Singh, D. J. W. Winterborn, L. M. Engelhardt, C. L. Raston, A. H. White, A. J. Carty and N. J. Taylor, J. Chem. Soc., Dalton Trans., 1987, 1463.

2 Cf. D. J. Cardin, M. F. Lappert and C. L. Raston, Chemistry of Organo-zirconium and -hafnium Compounds, Ellis Horwood, Chichester, 1986.
3 I. F. Urazowski, V. I. Ponomaryev, I. E. Nifant'ev and D. A. Lemenovskii, J. Organomet. Chem., 1989, 368, 287.

4 R. D. Rogers and J. H. Teuben, J. Organomet. Chem., 1989, 359, 41.

5 (a) J. H. Wengrovius, R. R. Schrock and C. S. Day, Inorg. Chem., 1981, 20, 1844; (b) S. Gambarotta and M. Y. Chiang, Organometallics, 1987, 6, 897; (c) M. Y. Chiang, S. Gambarotta and F. van Bolhuis, Organometallics, 1988, 7, 1864; (d) F. A. Cotton, M. P. Diebold and P. A. Kibala, Inorg. Chem., 1988, 27, 799; (e) Y. Wielstra, S. Gambarotta, A. Meetsma and J. L. de Boer, Organometallics, $1989, \mathbf{8}, 250 ;(f) \mathrm{Y}$. Wielstra, S. Gambarotta, A. Meetsma and A. L. Spek, Organometallics, 1989, 8, 2948; (g) Y. Wielstra, S. Gambarotta, A. Meetsma, A. L. Spek and W. J. Smeets, Organometallics, 1990, 9, 2142; (h) P. G. Edwards, J. A. K. Howard, J. S. Parry and A-R. Al-Soudani, J. Chem. Soc., Chem. Commun., 1991, 1385.
6 M.-M. Rohmer and M. Bénard, Organometallics, 1991, 10, 157.
7 A. Antiñolo, M. F. Lappert, G. A. Lawless and H. Olivier, Polyhedron, 1989, 8, 1882.
8 K. Issleib, H. Schmidt and E. Leissring, J. Organomet. Chem., 1990, 382, 53; Yin Ping, DPhil Thesis, University of Sussex, 1991.
9 K. Prout, T. S. Cameron, R. A. Forder, S. R. Critchley, B. Denton and G. V. Rees, Acta Crystallogr., Sect. B, 1974, 30, 2290.
10 G. K. Campbell, M. F. Lappert and D. J. W. Winterborn, unpublished work cited in ref. 2, p. 282.


[^0]:    $\dagger$ No reprints available.
    $\ddagger$ Crystal data for $\mathbf{1}: \mathrm{C}_{22} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{Si}_{4} \mathrm{Zr}, M=581.1$, orthorhombic, space group Pbcn, $a=17.929(7), b=9.132(3), c=18.647(2) \AA, U=3053.1$ $\AA^{3}, Z=4, D_{c}=1.26 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1216, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=6.9 \mathrm{~cm}^{-1}$. For 2a: $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{Si}_{8} \mathrm{Zr}_{2}, M=1091.2$, triclinic, space group $P \overline{1}$ (no. 2), $a=13.400(3), b=14.553(6), c=16.631(7) \AA, \alpha=75.82(3), \beta=$ $81.32(3), \gamma=71.88(3)^{\circ}, U=2978.7 \AA^{3}, Z=2, D_{\mathrm{c}}=1.22 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)$ $=1148, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=6.2 \mathrm{~cm}^{-1}$.

    Data were measured on an Enraf-Nonius CAD4 diffractometer using monochromated $\mathrm{Mo}-\mathrm{K} \alpha$-radiation, $\lambda=0.71069 \AA$. Intensities were measured for unique reflections with $2<\theta<25^{\circ} 1$ and $2<\theta<22^{\circ} 2 \mathrm{a}$. Out of the 30561 and 72872 2a unique reflections measured, 16971 and 4674 2a reflections with $\left|F^{2}\right|>2 \sigma\left(F^{2}\right)$ for 1 and $\left|F^{2}\right|>3 \sigma\left(F^{2}\right)$ for 2a were used in the refinement. The structures were solved by routine heavy atom methods and refined by full-matrix least-squares analysis with anisotropic temperatures for $\mathbf{1}$ and $\mathbf{2 a}$. Hydrogen atoms were held fixed at calculated positions. The weighting scheme was $w=1 / \sigma^{2}(F)$ and final residuals were $R=0.055, R^{\prime}=0.0661$ and $R=0.051, R^{\prime}=0.0652 \mathrm{a}$. All calculations were carried out using an Enraf-Nonius SDP-plus program system.

    Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

